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Abstract 

An improved algorithm is described for automated 
structure-factor refinement using convergent-beam 
electron diffraction patterns. In addition to refinement 
of structure factors, absorption coefficients and 
sample thickness, the new algorithm includes beam- 
direction refinement, the inclusion of weak-beam 
effects using the Bethe potential and the inclusion of 
finite-sized detector effects. The use of these new 
features is illustrated through the refinement of the 
MgO 200 systematic reflections. 

I. Introduction 

Convergent-beam electron diffraction (CBED) is a 
highly efficient structural p r o b e -  a large amount of 
quantitative structural and compositional informa- 
tion may be obtained from volumes as small as 1 nm 
in diameter. There has been continuous interest 
recently in devising systematic methods to extract this 
information from the readily available CBED pat- 
terns (for a recent review, see Spence, 1993). Most 
recently, Zuo & Spence (1991) used numerical 
optimization methods to automate the process of 
comparing elastic-filtered CBED intensities with 
Bloch-wave calculations, while treating structure 
factors, absorption coefficients and thickness as 
adjustable parameters. Similar methods may be 
used to compare experimental high-order Laue-zone 
(HOLZ) patterns with kinematical simulations, with 
the lattice parameters treated as adjustable param- 
eters (Zuo, 1992a). The structure factors give com- 
positional and structural information on the crystal, 
while the lattice parameters give local strain informa- 
tion. There have been many other efforts to extract 
information from CBED patterns using optimization 
methods. These include the theoretical studies by 

Marthinsen, Hcfier & Bakken (1990) on the refinement 
of structure-factor amplitude and phase from non- 
systematic CBED patterns, studies by Bird & Saun- 
ders (1992) on the possibility of determining crystal 
structure from zone-axis CBED patterns, and the 
experimental measurement of atomic positions from 
zone-axis HOLZ intensities by Tanaka & Terauchi 
(1990). The earlier automated refinement method 
described by Zuo & Spence (1991) was effective in 
refining complex structure factors and thickness, but 
required tedious precise orientation matching and has 
since been improved in several ways. These include 
an algorithm for automated beam-direction refine- 
ment, which was not available previously. The other 
new feature is a modification of the original algo- 
rithm to allow weak beams to be treated by the Bethe- 
potential method (Bethe, 1928). The Bethe-potential 
method was chosen over the perturbation method 
(Eaglesham, 1989; Zuo, 1991) because it has the 
advantages of simplicity and speed (Zuo, 1992b). 
This new feature allows us to include weak beams in 
the simulation to improve the convergence and 
requires only a fraction of the computer time com- 
pared to diagonalizing a full matrix with the weak 
beams included. The third new feature is an algorithm 
to include detector effects in the simulation and thus 
reduce possible systematic errors in the measured 
experimental data. These new features will be dis- 
cussed in the following sections. Before doing so, the 
results of earlier work will be briefly summarized. 

In a previous paper (Zuo & Spence, 1991), the 
algorithm R E F I N E / C B  was described for automa- 
tion of the process of measuring structure factors, 
absorption coefficients and thickness from energy- 
filtered convergent-beam electron diffraction data in 
the systematics orientation. This was accomplished 
by the definition of a best-fit parameter (X 2) and use 
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of an optimization routine to find the lowest X 2 - the 
best fit. Automation of this process: (1) speeds up 
the whole process; (2) avoids systematic errors due 
to subjectivity; and (3) simplifies the method. /¥2 is 
defined similarly to the standard definition of the 
goodness-of-fit parameter in statistics, 

X 2 = ~ 2 theory ( f /0- , ) (CI ,  _ i~xp)2 (1) 
i 

and 

C = [ ~ /  ( f / / o ' 2 ) / ~ x p / ' h e ° r y ] / [ ~ /  (fi/o"2i)I'he°rYI'he°ry]. 
(2) 

2 Here, 0-i is the variance, which can be found from 
= t exp with the repeated measurements or using 0 -2 _~ 

assumption of Poisson statistics for electron counting 
with a detector quantum efficiency (DQE) of 1. The 
f~ are weight coefficients, which are usually set to 1 
or 0 : 1  for points inside the convergent-beam disc 
and 0 for those outside. The f / c a n  also be adjusted 
to increase the importance of particular intensity 
points to X 2, which may be sensitive to particular 
parameters. However, this weighting must be used 
with great caution since the variance at the point is 
reduced by increasing f~. X 2 is the same as the R factor 
used in X-ray refinement if f~ are set to 1 or 0 [for a 
definition of the R factor, see, for example, Cruick- 
shank (1969)]. The experimental intensity data are 
assumed to consist of elastic energy-filtered parallel- 
line scans (see Fig. 1). The scan coordinates are the 
coordinates of points 1, 2 and 3 of Fig. 1 in units of 
the two basis vectors g and h. The parameters of 
structure-factor amplitude and phase, absorption 
coefficients and phases, and thickness are adjusted 
to find the lowest X 2. The theoretical intensity is 

Fig. 1. The beam direction is defined by a vector from the center 
of the Laue circle to a point in the diffraction pattern. Points 1, 
2 and 3 and the dashed lines define the parallel-line scans used 
in the experiment. The solid lines are the Kikuchi lines associated 
with g and h. The disc is a CBED disc. 

calculated by the Bloch-wave method (Zuo, Gj0nnes 
& Spence, 1989) and perturbation theory (Zuo, 1991). 
Perturbation theory is used when the changes in the 
structure factors and absorption coefficients are smal- 
ler than a previously entered limit. The use of the 
perturbation method results in a saving of computing 
time proportional to the number of beams included 
in the calculation. The optimization method used in 
this program is the simplex method. This optimization 
routine is more dynamic than other routines reported 
although the convergence to the minimum is slower. 
The whole process is thus rather similar to the Riet- 
veld method in neutron diffraction (Rietveld, 1969). 

2. Automated beam-direction refinement 

The beam direction describes the orientation relation- 
ship between the crystal and the incident plane wave. 
It is needed for the interpretation of diffraction 
patterns. Accurately measured beam directions are 
especially important in quantitative electron diffrac- 
tion because of the sensitivity of dynamical electron 
diffraction to the beam direction. In a diffraction 
pattern, each point is a new beam direction. Following 
the convention described by Zuo & Spence (1991), 
the beam direction is specified by the component of 
a wave vector in the zero-order Laue-zone (ZOLZ) 
plane, Kt, originating from the center of the Laue 
circle. This vector is described by its components in 
terms of the base vectors g and h (see Fig. 1). In a 
CBED pattern, however, only a point in the zero disc 
is truly an incident-beam direction; a point in the 
diffracted disc g is related to a point in the zero disc 
by a displacement vector -g .  The experimental 
intensity is measured along a set of parallel lines. The 
coordinates of these parallel lines are defined by 
points 1, 2 and 3 as shown in Fig. 1. A total of n 
equally spaced points on each line and m lines are 
measured. The beam directions for points 1, 2, 3 and 
the center of the zero disc, K'tl, K't2, K't3 and K'to, are 
also measured. (The prime is used to distinguish K't 
from K,, the incident-beam direction in the zero 
CBED disc.) Then the beam direction of the ith point 
on the j th  line is 

K', = ( i -  1 ) (K't2 - K't~)/(n - 1) 

+ ( j -  1)(K',3-K't ,) /(m- 1). 

The incident-beam direction at this point is 

K, = K', if IK',- K',0[ < d/2 ,  

K, = K ' t - g  i f [K' t -K' to-g[<d/2 

or non-existent for those points outside the CBED 
disc. Here, d is the diameter of the CBED disc in 
units of /~-~.  Thus, the incident-beam direction for 
each scan point is uniquely determined by the beam 
direction at points 1, 2, 3 and at the center of the zero 
disc. The beam-direction refinement depends on 
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features that are sensitive to the beam direction. For 
example, the deficency and excess of intensity in the 
zero disc and in a systematic disc g are used to refine 
the component  of the beam direction along the sys- 
tematic orientation. The deficiency in the zero disc 
caused by non-systematic reflections is used to refine 
the component  of the beam direction normal to the 
systematic orientation. 

Automation of the beam-direction refinement is 
done using the previous definition of X 2 and the 

BEAMRF ) 

DeFme parameters 

I Setup beam direction 
for each data points 

~ call subroutine TREF, ] 
find the lowest chi-square | 
with thickness as the ] 
parameter ] 

~ Find the next parameters 
using simplex 
optimization routine 

~ true 

(Re ) 
(a) 

TREF ) 

t 
Diagonalize Ug h matrix, get c i, 
C. i and ~i and save them in one 
file for each data point 

T" 

calculate intensity 

~ false 

Calculate the chi-square [ 

/ 
Find next thickness using | 
golden section P optimization method 

~ true 

(b) 

Fig. 2. (a) A simplified flow chart of subroutine BEAMRF.  The 
parameters refined here can be the coordinates of points 1, 2 
and 3 and the center of the zero disc (see Fig. 1). (b) Flow chart 
of subroutine TREF called by B E A M R F  to find the lowest X 2 
for the particular beam direction with the thickness as the adjust- 
able parameter. 

'simplex' optimization method. The algorithm is 
implemented in subroutine BEAMRF, which can be 
called before the structure-factor refinement. In this 
algorithm, the adjustable parameters are the crystal 
thickness and the x and y components of the incident 
electron wave vector at points 1, 2, 3 and at the center 
of the zero disc (see Fig. 1). Fig. 2(a) shows a sim- 
plified flow chart of this subroutine, while Fig. 2(b) 
shows the flow chart of subroutine TREF called by 
BEAMRF to find the lowest X 2 for a particular set 
of beam directions with thickness as the adjustable 
parameter. The beam-direction refinement routine is 
not designed to search for beam directions from one 
zone axis to another; it is intended to refine the beam 
direction as measured approximately from diffraction 
patterns recorded on film. These measurements are 
based on the geometry of HOLZ lines or Kikuchi 
lines, using methods described by Spence & Zuo 
(1992). New efforts are under way to develop an 
object-oriented Apple Macintosh program to simu- 
late geometric diffraction patterns showing Kikuchi 
and HOLZ lines, with the microscope x and y tilt 
under active control. This will enable instant diffrac- 
tion-pattern indexing and initial beam-direction 
measurement. These data can be transferred to the 
REFINE/CB program for further structure-factor 
refinement. 

3. Inclusion of weak beams by the 
Bethe-potential method 

The possibility of using Bethe perturbation potentials 
to include weak beams has been demonstrated by a 
number of authors (see, for example, GjOnnes, 
Gj0nnes, Zuo & Spence, 1989). This method was 
chosen over the perturbation method for the 
refinement procedure because of its accuracy and 
speed. 

In the Bloch-wave method, the wave field inside 
the crystal is a composite of different Bloch waves, 

~ ( r )  = ~  c~exp[27ri(K+y~n).r] 
i 

x ~ Cig exp (2zrig • r). (3) 
g 

The Bloch-wave function is found by solution of the 
following dispersion equation: 

2KS, Cg + ~., UghCh = 2K, yCg. (4) 
h 

Here, yi and C~ are eigenvalues and eigenvectors, c i 
is the excitation coefficient of the ith Bloch wave and 
Sg is the excitation error for reflection g. [For an 
introduction to the Bloch-wave method, see Spence 
& Zuo (1992).] Equation (4) is an eigenvalue 
equation. The dimension of the equation is the num- 
ber n of beams included. The solution is obtained by 
a numerical matrix diagonalization. The computing 
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time and memory required for the diagonalization is 
proportional to n 2. Thus, in practice, the number of 
beams included in the simulation must be limited. 
The truncation of beams may introduce a systematic 
error if the calculation fails to converge. This is illus- 
trated in Fig. 3, in which the thickness Pendell6sung 
for an MgO crystal along the [001] zone axis is 
calculated using different numbers of beams in the 
ZOLZ only. No absorption or Debye-Waller  factors 
were used. Atomic scattering factors for neutral 
spherical Mg and O atoms were used, with a =  
4.2112 ~ .  The computing time using a VAXstation 
3200 is shown in Table 1. Fig. 4 shows a comparison 
between the Bloch-wave calculation with n = 177 and 
a multislice calculation with 1394 beams included. 
This shows that n = 177 is sufficient to achieve conver- 
gence in this case. For other incident-beam directions 
or other crystals, this number may be larger or smaller. 
In the automated structure-refinement procedure for 
CBED, each data point is a new beam direction and 
a separate diagonalization is required and this calcu- 
lation is repeated for each step in the search for the 
lowest X a. For merely 100 data points and 100 search 
steps, the total computing time will be 10 000 times 
the single diagonalization time. For the n = 177 
diagonalization, the total time will be 1550 h accord- 
ing to Table 1 and the above calculations. Hence, 
such computation is impractical with today's com- 
puters. Of the 177 beams included in the calculation, 
the majority are weak beams. A beam h is said to be 
a weak beam if (Zuo, 1991) 

2KSh >> [ Uglmax , (5 )  

where I Ugimax is the largest IUgl involved. For those 
Bloch waves associated with strong beams, the eigen- 
value y is of the order of the interaction Ug. In these 
Bloch waves, the equation for the weak beam h may 

Table 1. Computing times and conditions for curves 
( a) to ( e) in Figs. 3 and 5 

n is the number of beams treated by diagonalization; N - n is the 
number of weak beams treated by the Bethe potential. 

Curve n N - n CPU time (s) 

(a) 177 0 558 
(b) 89 0 107 
(c) 45 0 31.2 
(d) 21 0 12.6 

(e) 45 132 47.7 

be approximated by 

2KShCh + E UhgCg ~-0. 
g 

Thus, 

Ch=--~ UhgCg/2KSh. (6) 
g 

Substituting this into (4) for the strong beams, we 
obtain 

g'~g,h h#g ,g '  

= 2K~,c~, (7) 

where the h summation is over all the weak beams 
and the g' summation is over all the strong beams. 
The correction terms in (7) are called Bethe potentials. 
The Bethe potential actually has two terms: one is a 
correction term for the excitation error, the other is 
the correction for the structure factor. Both are impor- 
tant. Calculation of the Bethe potentials is straightfor- 
ward. Once they are calculated, a matrix containing 
only strong beams with the modified structure factors 

1.20 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

Fig. 3. Calculated PendelI6sung intensities for MgO along [001] 
with different numbers of beams: 177 for curve (a); 89 for curve 
(b); 45 for curve (c); and 21 for curve (d). 
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Fig. 4. Comparison between Pendell6sung intensities calculated 
by the Bloch-wave method using 177 beams (dashed) line and 
by the multislice method with 1394 beams (solid line). The circles 
and diamonds mark selected points on these two curves. 
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and excitation errors is diagonalized. The eigenvalues 
and eigenvectors obtained are used for the intensity 
calculations. The diagonalization time will be propor- 
tional to the square of the number of strong beams, 
not the total number of beams, and the calculation 
of the Bethe potential is proportional to the number 
of weak beams, not the square of this number. This 
can save considerable computer time compared to 
straightforward diagonalization. Let us suppose that 
a total of N beams are included, among which n 
beams are strong and N - n  are weak. In the Bethe- 
potential method, the n x n matrix containing all the 
strong beams is diagonalized and the Bethe potential 
is calculated for each element in this submatrix. The 
computer time for doing this is proportional to cn2+ 
n 2 ( N  - n ) /2 ,  compared to a computer time of c N  2 
for full diagonalization, where c is a coefficient much 
larger than 1. Fig. 5 shows the results of using the 
Bethe potential with n =45 and N =  177, in com- 
parison with the exact calculations for N = n = 177 
or 45, which is sufficiently close to the results of matrix 
diagonalization with 177 beams. The computing time 
using the Bethe potential is only slightly higher than 
the matrix diagonalization with 45 beams. 

In the implementation of the Bethe-potential 
method in the automated refinement procedure, the 
practical question arises as to which beam should be 
considered as a weak beam. This choice depends on 
the beam direction. The criterion 

Sg> Sgma x (8)  

is used to define a weak beam. The cutoff Sgmax is a 
parameter in the algorithm, which may be varied. It 
is generally recommended that 2KSgmax- > 1.0,~-2. 
For each incident-beam direction, R E F I N E / C B  
calculates the excitation error for each beam and 
chooses the weak beams and strong beams based on 
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Fig. 5. Comparison between Pendell6sung intensities calculated 
with n = 1 7 7  and N - n = O  (curve a), n = 4 5  and N - n = O  
(curve c) and n = 45 and N -  n = 132 (curve e). For details, see 
text. 

(8). The other method of treating weak-beam effects 
is the perturbation approach (Eaglesham, 1989; Zuo, 
1991). The computation in the perturbation approach 
requires the evaluation of a second-order correction 
to the eigenvalues and a first-order correction to the 
eigenvectors. The computing time is thus proportional 
to cn2+ n 3 ( N  - n), which is slower than the Bethe- 
potential method. In the auto-refinement procedure, 
only the intensity of the 'strong beams' can be calcu- 
lated. To prevent the algorithm from treating a reflec- 
tion in the scan as a weak beam, we define a parameter 
NCORE. The first NCORE beams will always be 
treated by diagonalization only. To test the accuracy 
of the Bethe-potential method, we have calculated a 
systematic rocking curve in a sparse zone axis by full 
diagonalization only and then used this as test 'experi- 
mental data '  for a refinement, in which beams with 
2KSgmax - - >  1.0 A -2 a r e  treated by the Bethe-potential 
method. The refined structure factors and absorption 
coefficients are the same as those used in the test 
rocking-curve calculation. Hence, the possible sys- 
tematic error owing to use of the approximate Bethe- 
potential method is zero in this case. Again, this result 
depends on the crystal and orientations used. In prac- 
tice, Sgmax may be varied to see if it gives different 
refined parameters. This should be repeated until 
results are the 'same' in terms of the estimated errors. 

4. Detector effects 

This refers to the effects of the finite-sized detector 
on the measured rocking curve, and hence its effects 
on the results of the structure-factor refinement. This 
was previously ignored in our earlier publication (Zuo 
& Spence, 1991). The detector effect may be general- 
ized to include the beam broadening due to the disper- 
sion in the electron-photon converter, such as yttrium 
aluminium garnet (YAG), used in the two- 
dimensional charge-coupled device (CCD) detection 
array, or the diffuse scattering of thermal inelastic 
scattering or of random structural disorder such as 
that due to disorder occupancy. The detector effect 
on the rocking curve is the convolution of the ideal 
rocking curve with the detector response. The detector 
function can be a Gaussian-type distribution function 
in the case of diffuse scattering or a function of 1 
inside the detector aperture and 0 outside. For a 
circular detector, the response function of the detector 
for a one-dimensional systematic scan is 2(D 2 - d2) 1/2 
for d < D and 0 for d -  D, where D is the detector 
radius and d is the distance to the center of the 
detector. This assumes that the intensity in a direction 
normal to the systematic direction is constant. In the 
general case of a two-dimensional diffraction pattern, 
a two-dimensional convolution with the detector 
function is required. Deconvolution of the experi- 
mental data against the detector response function is 
often difficult because of the noise in the experimental 
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data and the noise-amplification effects of the decon- 
volution process. Thus, it is better to convolute the 
theoretical data with the detector response function 
to simulate the experimental conditions. The convol- 
ution is done numerically using the fast Fourier trans- 
formation. In this way, different response functions 
can be accommodated easily. In the experimental 
measurement, the spacing of points should be com- 
parable to the size of the detector, since it is a waste 
of both computing and experimental-instrument time 
to have a spacing much smaller than the detector size. 
The rocking curve is magnified using numerical inter- 
polation and reduced after the convolution. The 
detector generally affects the high-order beams most 
because of the rapidly varying features in the rocking 
curve of these beams. This is illustrated in the 
refinement of the 200 and 400 structure factors of 
MgO with and without taking account of detector 
effects, described in the next section. 

5. An example 

Fig. 6 shows an example of structure-factor refine- 
ment using the improved REFINE/CB program. 
The energy-filtered experimental data are for 
MgO [200] systematics taken near the [012] zone axis 
at 100 kV from a Philips 400T microscope equipped 
with a serial energy-loss spectrometer tuned to the 
elastic peak. The MgO crystal is a rectangular plate 
of MgO smoke. The detector size is 0.167 mrad. The 
final refinement was carried out with a 123 beam 
refinement and 2KSgmax = 1.0 A -2. Those beams with 
excitation errors larger than 1.0 were treated by the 
Bethe-potential method. The structure factors in- 
volved other than those being refined were calculated 
from atomic scattering factors of neutral Mg and O 
atoms as listed in Table 2.2B of International Tables 
for X-ray Crystallography (1974). The Debye-Waller 

XlO 3 

2.5C 

2.0C 

1.5C 

~ 1.00. 
z_ 

0.5C i~ 

O.OC k_..._._ 

Fig. 6. Results of  MgO 200 systematics refinement using the 
improved REFINE/CB program. The circles with error bars 
are the experimental data and the upper solid line is the best 
fit. The lower solid line is the difference between the experimental 
data and the theoretical best fit. 

factors used for the Mg and O atoms are 0.346 and 
0.315A 2, respectively, from neutron diffraction 
measurement (Sabine, Von Dreele & Jorgensen, 
1988). These Debye-Waller  factors were also used to 
calculate those absorption coefficients not being 
refined, using subroutine ATOM (Bird & King, 1990). 
The experimental detector size was used to simulate 
the detector effect. The final results are shown in Fig. 
6, and the refined structure factors are 

X 2 = 7.7 

U(200) = 0.05551 (8) A -z, 

U'(200) = 0.001381 (40) A -2 

U(400) = 0.02488 (30) A -z, 

U'(400) = 0.00045 (6) A -2, 

t = 953.5 (9) A. 

In Fig. 6, the deficiency in the zero disc due to the 
400 Bragg condition and the corresponding excess in 
the 400 disc were used for initial estimation of the x 
component of the beam direction and are the features 
exploited in the auto-refinement of three-dimensional 
beam directions. The deficiency indicated by the 
arrow in Fig. 6 is due to the 442 Bragg condition, 
which is used for the y component of beam-direction 
measurement and refinement. 

The same refinement with a detector of negligible 
dimensions gives 

g 2 = 8.0, 

U(200) = 0.05555 A- : ,  

u ' (200) = 0.001392 A -2, 

u(400) = 0.02466 A -2, 

u ' (400) = 0.00042 A -2, 

t = 953.5 A. 

The value of ,~,2 has increased slightly and there is 
significant difference in the measured 400 structure 
factor, but negligible difference in the 200 structure 
factor. In the diffuse-scattering case, the detector 
effects may become serious and must be included in 
the simulation. 

The importance of the weak beams is illustrated 
by a repetition of the refinement with only 19 beams. 
This refinement gives 

g 2 = 9.0, 

U(200) = 0.05555 A -2, 

U'(200) = 0.001311 A -2, 

U(400) = 0.02535 A -2, 

U'(400) = 0.00051 A -2, 

t = 953.7 A. 
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The value of  X 2 has increased.  In this case, the beam 
cut-off has a large effect on the 400 structure factor 
and absorpt ion,  and negligible effect on the other 
parameters.  Zuo & Spence (1991) gave U ( 2 0 0 ) =  
0.05847/~-2 and U(400) = 0.02484/~-2 at 120 kV or 
U(200) = 0.05661 A-2 and  U(400) = 0.02405/~-2 at 
100 kV. The reason for the difference between the 
current and  previous values may be due to the 
difference in the data-normal iza t ion  method  used. 
The previous ref inement  used a point  for normaliz-  
ation and  par t icular  weights were appl ied  for 
intensities near  the Bragg condit ion,  while the current 
ref inement  uses f~ = 1 for every exper imental  point  
and  uses (2) to calculate the normal iza t ion  coefficients 
C. This is under  further investigation. This, and a 
compar i son  with other studies on MgO, will be pub- 
l ished in a for thcoming paper.  

6. Concluding remarks 

Features of  the R E F I N E / C B  program for the quanti-  
tative analysis  of  C B E D  patterns are: 

1. dynamic  beam-direc t ion  ref inement using the 
s implex opt imizat ion method;  

2. structure-factor ampl i tude  and phase,  absorp- 
t ion ampl i tude  and phase,  and thickness ref inement  
using data collected along a line; 

3. electron scattering intensi ty s imulat ion by the 
three-d imensional  Bloch-wave method;  

4. weak beams inc luded  using the Bethe-potential  
method;  

5. intensi ty calculat ion by the per turbat ion method  
for small  changes in the scattering potential  (e.g. 
owing to bonding  effects); 

6. error analysis.  
The R E F I N E / C B  program has been proved to 

be accurate and flexible in the examples  provided 
and other appl icat ions,  e.g. structure-factor phase 
de terminat ion  in acentric crystals (Zuo, Spence, 
Downs & Mayer,  1993). 

Recently,  a method has also been developed for 
the automated  ref inement  of  lattice parameters  from 
HOLZ-l ine  patterns and for auto-generat ion of  
geometric diffraction patterns using only crystal data 

and the microscope x, y tilt as input.  These methods  
and the R E F I N E / C B  method have now become 
useful ' tools '  avai lable  to extract both structural and  
composi t ional  informat ion  from materials  s tudied by 
convergent-beam electron diffraction, which has been  
t radi t ional ly underut i l ized.  In the future, these 
methods can be integrated together with a user- 
f r iendly h u m a n  interface. They can then be used like 
any of the m a n y  ' funct ions '  on the microscope.  
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